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Abstract—Coordination in a distributed environment is a
challenging problem. Here, we show how the idea of proof-of-
work from computer science can be adapted to a game-theoretic
setting to help players determine how many other players are
present in a game and, therefore, available for coordination. The
key idea is that a computational puzzle is distributed to all agents
in the system and, if the puzzle is solved rapidly, then each agent
can infer that, with high probability, a large number of other
agents must have been working on it. We call this “proof-of-
presence” (POP) and show how appending a POP mechanism to
a game enables coordination when it would not otherwise happen,
even if there are malicious agents present.

I. INTRODUCTION

Coordination among agents is a fundamental challenge
in a distributed environment. In game theory, this issue is
formalized as a coordination game among players who are
spatially separated. The challenge is for the players to attain a
Nash equilibrium of the game or — if there are Pareto-ranked
equilibria — to attain an efficient equilibrium. In computer sci-
ence, the issue of distributed coordination has been formalized
as the Two Generals’ Problem [1] and the Byzantine Generals’
Problem [2]. In that problem, there are a number of generals
who can safely attack a city only if sufficiently many other
generals attack at the same time. Typically, it is assumed that
communication among the generals is unreliable due to the
presence of malicious agents who intercept messages or forge
false ones. With the advent of blockchain [3], the idea of proof-
of-work (POW) is often seen as a way to obtain coordination
in these settings [4].!

This paper investigates another aspect of coordination,
namely, uncertainty over the number of players who are
present. In the language of the Byzantine Generals’ Problem,
each general might be confident the attack time is 4:00am (say
this is the customary time for an attack) but less confident
about how many other generals will be present to attack.
(Other generals might have to prioritize other offensives.) In
particular, we are interested in an anonymous environment,
where there is no centralized list of players and no way to
verify an individual’s identity. For example, we can think of

'POW has been explained as follows: “[I]n a POW, a prover demonstrates
to a verifier that she has performed a certain amount of computational work
in a specified interval of time.” [5]

organizing a meeting using an anonymous message board.
Anyone can post to the message board, and messages cannot
be altered. However, there is no way to identify a post’s
author or how many people are posting. In this setting, a
single malicious actor could easily pretend to be many people,
artificially inflating how many attendees there promise to be.
This effect thwarts any straightforward attempt to make a
simple headcount.

In this paper, we show the POW mechanism can be adapted
to make a reliable (albeit probabilistic) headcount.?2 We call
this proof-of-presence (POP), and we analyze how it enables
coordination. We construct a game-theoretic setting with an
uncertain number of players, and analyze when a coordination
equilibrium exists. We show that the POP mechanism enables
coordination in settings where coordination would otherwise
be impossible. Our main result establishes exact bounds on
when coordination can be created through use of the POP
mechanism.

Our POP mechanism works much like the original POW
concept. A puzzle is posted on the message board that can only
be solved by guesswork, but the solution can be immediately
verified by any agent. Players who are present work on solving
the problem, and post the solution if they find it. If the
solution is found before a predetermined time, then players
choose to take the coordination action (e.g., show up to the
meeting); otherwise, they do not. The intuition for why this
procedure provides POP is this: If a puzzle can be solved
only by guessing, and the rate of guessing is bounded (across
agents), then a solution within a short period of time is a
(probabilistic) proposition that a large number of agents must
have been working on the puzzle.

We allow for both good-faith players (who participate in the
game if a solution is found in time) and malicious agents (who
do not participate in the game and may confuse the headcount).
The intuition for the POP mechanism would seem to require
the number of malicious agents (which may be probabilistic)
to be small relative to the number of players. The argument
would be that a small number of malicious agents could have

2Qur procedure is inspired by the clever argument by DeDeo [6], which
describes the idea of POW via a parable of guests in a hotel who communicate
with one another through an unreliable concierge.



only have a limited impact on when (or if) a solution is found.
Hence, the puzzle provides a way of taking a (probabilistic)
headcount that is immune to manipulation from sufficiently
few such agents. Surprisingly, however, we are able to show
that the POP mechanism functions even when the number
of malicious agents is large, as long as the distribution of
malicious agents satisfies a discrete form of log-concavity
(a property satisfied by many common distributions). This
property allows us to use monotone likelihood ratio property
arguments to establish the effectiveness of POP in enabling
coordination, regardless of the relative number of good-faith
players and malicious agents.

II. THE “PROOF OF PRESENCE” PROCEDURE

There is a universe consisting of good-faith players and
malicious agents. There is a maximum of m good-faith players
and a probability distribution p = (p1,p2,...,Pm) on the
number of good-faith players.? There is a maximum of n mali-
cious agents and a probability distribution ¢ = (qo, q1,-.-,qn)
on the number of malicious agents. We will assume these
distributions are full support over their ranges, independent,
and that g follows a discrete form of log-concavity where
¢i+1/9; < ¢j/gj—1 for all 1 < j < n — 1. (We show how
to weaken these assumptions later.) Both p and ¢ are from
the perspective of a good-faith player who is present, which
is why 0 is not in the support of p. From now on, we will use
the unqualified term “player” to refer to a good-faith player.

Each player has a coordination action and a null action
(payoff W*). The payoff from the coordination action is a
strictly increasing function W : {1,2,...,m} — R, where
W (k) is the payoff if k players take the coordination action.
Malicious agents do not participate in the game (or can be
thought of as always taking the null action). We will assume
that W (1) < W™ so that players do not want to take the
coordination action by themselves.

Time is continuous and indexed by ¢ in [0, 00). At time 0,
a computational puzzle is posted to the anonymous message
board and read by all players and malicious agents present.
Each player or malicious agent has a machine that works on
the puzzle by randomly guessing, with a Poisson arrival rate
A of finding a solution. If a machine finds a solution, it posts
it on the message board without notifying the solver. There is
a pre-specified time 7' at which all players can read off the
message board whether or not at least one solution has been
found. Call this procedure the POP mechanism appended to

3Harsanyi [7] argued (though he did not formally prove) that uncertainty
over whether or not a player is present in a game could be shifted to
uncertainty over that player’s payoff function (where the player is definitely
present). The idea is to give the player a payoff of —oo from all actions
(except a null action) to correspond to the case where s/he is absent. There
seems no benefit (and an interpretational disadvantage) to our trying to follow
this route.

the underlying game.*

We are interested in analyzing the strategy where a player
who is present takes the coordination action if a solution is
displayed at the pre-specified time 7. Call this the coordination
strategy. We want to know when this strategy is optimal in
the sense of constituting a Nash equilibrium. In other words,
we investigate when this strategy is optimal for each player
assuming all other players follow it.

III. PROBABILITY CALCULATIONS

We now calculate probabilities, from the perspective of a
player who is present. The probability that a total of k players

and malicious agents are present, for k = 1,2,...,m +mn, is
given by
min{k,m}
Tk = Z Pidr—i-

i=max{1l,k—n}

By the properties of the exponential distribution, the prob-
ability that no solution is found by time 7, if k players and
malicious agents are working (independently) on the puzzle is
e T Tt follows that the probability that exactly k players
and malicious agents were working on the puzzle, if a solution
is found by T, is given by

ri(1 — e )

m+n )\
2o (1 —eNT)

Next, the probability that ¢ players are present given k
players and malicious agents are present is given by

or(k) =

' PiGk—i if max ]_7]{}77’1, < ¢ < min k,m,
’Vk(l):{ Tk { bsis { )

0 otherwise.

Assume a solution is displayed at time 7. Think of ¢ and
k as random variables representing the number of players and
the number of players plus malicious agents, respectively. The
expected payoff Er-W to a player following the coordination
strategy after seeing the solution, assuming all other players
do so as well, can be written as

m+n m-+n
ErW =" ¢r(k) Y w(@)W(i).
k=1 i=1

By calculating limits as 7" approaches O (this uses I’Hopital’s
Rule) and oo, we find

Epq [W(i)A]

E W = lim E;W =
0 50T E,, k]

and
E W = Th_}rréo ErW =E;, (W(%)],

where E,, , indicates the expectation taken under the a priori
probability distributions p, g.

“Note that we assume solutions are transmitted without the solvers’ being
aware they found a solution. This assumption preserves symmetry between
the player(s) who solved and the other players, which is not necessary for any
of our results but helps simplify the analysis. We could also allow players to
see immediately that a solution has been posted. This would complicate our
analysis but would not, we believe, lead to qualitatively different results.
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Fig. 1. Expected Payoff of Coordination Strategy

IV. RESULTS

We first present and discuss our results. We defer the proofs
to the end of the section. The main mathematical result is the
following.

Proposition 1. E-W is strictly decreasing in T.

This result says that a player’s payoff from following the
coordination strategy strictly decreases in the pre-specified
time 7' (when other players present follow this strategy).
This validates the earlier intuition that a rapid solution to the
computational puzzle should make choosing the coordination
action more attractive to players. We can depict the general
shape of E7W as a decreasing function starting from EyWW
and decreasing to E W, as shown in Figure 1 above.

Figure 1 assumes the case that E.,-W < W* < EgW,
which is necessary to make the problem interesting. If W* >
EoW, then even a puzzle that was immediately solved could
not induce the players to take the coordination action. This
would mean coordination is impossible. Conversely, if W* <
E W, then the puzzle is not necessary for coordination to be
an equilibrium.

Figure 1 illustrates how Proposition 1 can be used to
determine the conditions under which the coordination strategy
is a Nash equilibrium. Let 0 < T < oo solve ExW = W™*.
Fix a pre-specified time 7' and a particular player ¢. Assume
all other players present are playing the coordination strategy
(with respect to T'). If a solution is revealed at 7', then the
expected payoff of playing the coordination strategy to player
1 is EpW. It will therefore be optimal for the player to take the
coordination action exactly when E-W > Er« W, which, by
Proposition 1, occurs when T' < T™*. If no solution is revealed
at T', then player ¢ will take the null action since we assumed
W (1) < W*. Therefore, T < T* is the precise condition that
makes the coordination strategies form a Nash equilibrium

We now state this more formally.

Proposition 2. Suppose E. W < W* < EqW. Let 0 <
T < oo solve EpW = W*. Append the POP mechanism
with a pre-specified time T, and consider the strategy profile

where all players choose the coordination action if a solution
is revealed at time T, and the null action otherwise. Then it
is a Nash equilibrium for all players to choose this strategy if
and only if T < T*. Moreover, without the POP mechanism
the only Nash equilibrium is where all players always take the
null action.

The first part of Proposition 2 follows from Proposition 1
using the logic we outlined above. To see the second part, note
that, without any mechanism, E,W is the payoff to a player
from taking the coordination action assuming all other present
players take this action, too. This represent the most optimistic
assumption about the strategies of the other players, and thus
E. W is an upper bound on a player’s expected payoff from
taking the coordination action. But Proposition 2 assumes that
W* > E. W, which implies that, without a mechanism, the
null action is always better.

We now turn to proving Proposition 1. Given two dis-
tributions pi,ps, we will use the notation p; >p po to
indicate that p; first-order stochastically dominates (FOSD)
p2. To prove Proposition 1 we will prove two statements: (1)
Ye+1 =D Yk for all k; and (2) ¢ry1 <p ¢rp for all T. In
words, statement (1) says that a player’s beliefs about the
number of players present increases with the total number
of players plus malicious agents. Statement (2) says that a
player’s beliefs about the total number of players plus ma-
licious agents decreases with 7'. Intuitively, these statements
combine to deliver Proposition 1. To see this formally, define

m—+n

V(k) =Y wm@W(i),
i=1

so that we can rewrite ExW as

m+n

ErW =Y ¢r(k)V (k).

k=1
Statement (1), along with the fact that W is strictly increasing
in 7, implies that V is strictly increasing in k. Statement
(2), along with the fact that V' is strictly increasing in k,
implies that E;-W is strictly decreasing in 7'. Thus, to prove
Proposition 1, it suffices to prove statements (1) and (2).

To do so, we will prove the stronger statements: (3) i
has the increasing monotone likelihood ratio property (MLRP)
relative to k; and (4) ¢ has the decreasing MLRP relative to
T. Using the standard fact that the increasing (decreasing)
MLRP implies increasing (decreasing) first-order stochastic
dominance, we see that (3) implies (1), and (4) implies (2).

Lemma 1. ~; satisfies the increasing MLRP with respect to
k.

Proof: The definition of MLRP requires that for all ¢ and
1<k<m+n-1

V1 (D) _ yepr(i 1)

Vi (%) Y (i+1)

with the inequality holding strictly for at least one ¢. (This

requirement that Equation (1) holds strictly at least once is not

)



always included in the definition of MLRP, but it is necessary
to get that MLRP implies FOSD.)

To avoid issues of dividing by 0, we instead we write this
as

Vi1 (D) Ve + 1) < V(D)1 (i + 1),

If ¢+ > min{k,m}, then ~; (¢ +1) = 0, and the right-hand
side is always non-negative, hence the inequality holds.

Next suppose ¢ is in the range [max{1, k —n}, max{1, k+
1—n}). Here ~y,11(¢) = 0 which again ensures the inequality
always holds.

Now consider 4 in the range [max{1, k+1—n}, min{k, m}).
We no longer have to worry about dividing by 0 so we revert
to considering our original inequality (1). Here,

7k+1(i) _ PiQkai/TkH _ qk+1—i % Tk
Vi (4) Qk—i Th+1

Pidk—i/Tk
By our assumption on ¢, we conclude that qxi1_;/qr—; is
strictly increasing in ¢. It follows that for ¢ in the complete
range [max{1l,k — n},min{k, m}), the desired inequality
holds strictly. This establishes that ~; satisfies the increasing
MLRP.

We now need to show that MLRP holds strictly for at least
one i. If [max{1, k—n}, max{1,k+1—n}) contains a whole
number 4, then -y (¢) # 0 by the full-support assumption and
~k+1 (1) = 0 as discussed above, which gives the desired strict
inequality. On the other hand, if [max{1, k — n}, max{1, k+
1 —n}) does not contain a whole number 4, then it must be
that [max{1, k+1—n}, min{k, m}) contains a whole number
1. And for this ¢ we showed above the MLRP holds strictly.

|

Lemma 1 is the only place where we use the assumption that
p and q are full support and independent, or the assumption
that ¢ is (discrete) log-concave. We could do away with both
assumptions by instead directly assuming that y;, is increasing,
in the sense of FOSD, in k. In words, this assumption would
mean that the estimate of the number of players is increasing
in the total number of players plus malicious agents.

Lemma 2. ¢r(k) satisfies the decreasing MLRP in T and
o1 # 7 for T #T".

Proof: Assume T' > T > 0, and we want to show that

k=1,2,....m+n—1,
¢r(k+1) _ ¢ (k)
dr(k+1) = ¢r(k)’
or equivalently that
¢r(k+1) _ ¢r(k+1)
o (k) or(k)

with the inequality hold strictly for at least one k. Accordingly,
we will show that ¢r(k + 1)/ér(k) is strictly decreasing in
T. Let

1 — e~ Ak+)T

9(T,k,\) = T

Then, by the definition of ¢r(k),
Tk+1 _ (,ZST(]C + 1)
Tk or(k)

so it is enough to show that g (T, k, \) is strictly decreasing
in T'. We can calculate

g(T, k, \) x

Ag (T, k,A) Ak +1)e MEEDT - Ao T (1 — o= ARHDT)

oT - 1 _ o NeT (1 — e MT)2
from which we find dg/9T < 0 if and only if
h(T k) = (k+1)e T — e AMEFDT _ <,

Since A(T,0,\) = 0, it is enough to
Oh(T, k,\)/0k < 0 for all k£ > 0. Calculating
Oh (T, k,\)
ok
Suppose, by way of contradiction, that Oh/0k > 0. Then

show that

= e N \Te  MEHDT _ 7

AE+D)T _ ART

e

T =1L
By the mean value theorem, there is then a number ¢, where
AT < ¢ < Mk + 1)T, such that e¢ < 1, which is impossible
since ¢ > 0. |

V. DISCUSSION

In this paper, we showed the POW concept can be adapted
to provide a reliable, albeit probabilistic, headcount in an
anonymous environment with malicious agents. We refer to
this adaptation as the proof-of-presence (POP) mechanism.
The key idea is that if a puzzle can only be solved through
guessing, then the faster it is solved the more likely it is
that more people are working on it. The primary application
we have in mind is organizing meetings for anonymous
online communities in the presence of potential disruptors who
attempt to make any headcount as unreliable as possible. In
this environment, our analysis shows that the POP mechanism
provides a tool that can help the community members suc-
cessfully coordinate on a decision to meet.

For simplicity, we ignored a number of complicating factors
that may appear in the real world. We now discuss some such
factors and how they would impact our analysis of the POP
mechanism. The first factor is that players or malicious agents
may apply different levels of computational power to guessing
the puzzle, leading to different arrival rates for a solution. This
seem especially likely in the case of the malicious agents who,
depending on the cost, have an incentive to apply additional
computational power to disrupt coordination. However, we
can simply think of each malicious agent in our setting as
representing a unit of computational power applied by the
malicious agents. Under this re-conceptualization, all of our re-
sults remain the same and the POP mechanism still functions.
This re-conceptualization works because the malicious agents
only matter through the impact they have on the solution time
for the puzzle. Whether one or many malicious agents are



involved is irrelevant, assuming they apply the same aggregate
computational power. For the players, since they want the POP
mechanism to succeed, they can simply all agree to use the
same level of computational power. Alternatively, we could
vary the arrival rates (the \’s) by player to model different
levels of computational power. We conjecture that this would
only serve to complicate the analysis without qualitatively
changing the results.

The reinterpretation of malicious agents as units of compu-
tational power highlights the surprising feature that the POP
mechanism does not depend on there being only a small
number of malicious agents present. This means that even if
the malicious agents have far more computational power than
the players have, the POP mechanism still functions. This is
because behavior of the malicious agents does not interfere
with the inference that a faster solution means there are likely
more players present. Increasing the (probabilistic) amount of
malicious computational power only lowers the threshold on
how fast the solution must be solved to make coordination
worthwhile. It does not change the fact that such a threshold
exists.

A second complicating factor not addressed in our analysis
is that solving the puzzle may be costly for the players. This
gives an incentive for players to free-ride by not spending
any effort in solving the puzzle while still joining in the
coordination game. We can solve this issue the same way it
is solved in POW mechanisms such as bitcoin, by providing
a reward to whomever posts the first solution. To maintain
anonymity, the reward could be in the form of a gift card
messaged to the winner’s anonymous account.

Another factor our analysis does not address is that of
the optimal value of 7. The optimal 7' must balance three
considerations. First, the value of 1" must be below the thresh-
old T* to ensure that the coordination strategies constitute
an equilibrium, as characterized in the results of this paper.
Second, the mechanism wants to minimize the number of times
players take the coordination action when there are not enough
players present to justify this choice. Third, the mechanism
wants to maximize the number of times the players take the
coordination action when there are enough players present to
justify this choice. The second consideration pushes in favor of
lowering the cutoff 7', while the third consideration pushes in
favor of raising 7. Finding the balance of these considerations
looks to be a fairly standard mechanism design problem where
the optimal 7' will depend on the payoffs W(:) and W*.
Also, there may be additional payoff features not included in
our analysis. For example, a successful coordination outcome
may have positive externalities that accrue to the non-present
players. Characterizing the optimal 7' is beyond the scope of
our current paper and is left for future work.
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